Optimizing Amazon's Recommendation System Using Collaborative Filtering and SVD

Muhammad Rizain Firdaus - 13523164 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia <u>13523164@std.stei.itb.ac.id, icon.firdaus@gmail.com</u>

Abstract— This paper presents optimizing amazon's recommendation system using collaborative filtering and SVD. The study focuses on addressing challenges in ecommerce recommendation systems, such as data sparsity and scalability, by leveraging matrix factorization techniques. By applying SVD to the user-item interaction matrix, latent factors representing user preferences and item characteristics are extracted, enabling the system to predict missing interactions and generate personalized recommendations. Using Amazon's product review dataset, the paper demonstrates how SVD improves the accuracy and efficiency of recommendations by reducing dimensionality and uncovering hidden patterns in the data. The findings highlight the critical role of CF and SVD in delivering scalable, accurate, and personalized user experiences, ultimately driving customer satisfaction and business growth.

Keywords— Collaborative Filtering, Singular Value Decomposition, Recommendation System, E-commerce, Amazon

I. INTRODUCTION

In the competitive landscape of e-commerce, delivering personalized user experiences has become a critical factor for success. Recommender systems play a central role in achieving this, as they help businesses suggest relevant products to customers based on their preferences and behavior. Amazon, one of the world's largest e-commerce platforms, exemplifies the power of such systems by utilizing them to boost user engagement and maximize sales. A key component of these systems is the application of Singular Value Decomposition (SVD), a matrix factorization technique from linear algebra. SVD is particularly effective in collaborative filtering, where user-item interactions are modeled using large-scale matrices. By decomposing these matrices into latent factors, SVD identifies patterns that are not explicitly visible, such as similarities between users with seemingly different preferences or hidden relationships between products. Collaborative filtering is one of the most widely adopted and successful recommendation approaches. Unlike approaches based on intrinsic consumer and product characteristics, CF characterizes consumers and products implicitly by their previous interactions. The simplest example is to recommend the most popular products to all consumers. Researchers are advancing CF technologies in such areas as algorithm design, humancomputer interaction design, consumer incentive analysis, and privacy protection [1].

Took an example from big e-commerce company such as Amazon's recommendation system, SVD works by analyzing massive datasets of user-item interactions, such as purchase history, product ratings, and browsing activity. For example:

- Matrix Representation: The data is represented as a sparse matrix, where rows correspond to users, columns correspond to products, and entries represent interactions (e.g., ratings or purchase counts).
- Decomposition: SVD decomposes this matrix into three components: user features, item features, and a diagonal matrix of singular values, reducing dimensionality while preserving key information.
- Prediction: These latent features are then used to predict a user's preference for unseen products, allowing the system to recommend items they are likely to engage with.

This paper delves into the mathematical foundation of SVD, its application in collaborative filtering, and its integration into one of the famous e-commerce recommendation architectures which the writer chooses Amazon as a sample. Furthermore, it examines how SVD addresses practical challenges in ecommerce systems, such as data sparsity and scalability, and highlights its impact on customer satisfaction and business outcomes.

Fig 1.2 Illustration for collaborative filtering and contentbased filtering scenario

Source: LinkedIn

II. THEORETICAL BASIS

A. Fundamental of Matrix

1. Introduction to Matrices

Matrix is a very important data representation [2]. and is widely used in many fields of engineering including informatics. A matrix is a two-dimensional array of numbers arranged in rows and columns, often denoted as A. Mathematically, a matrix of size $m \times n$ has m rows and n columns, where each entry A_{ij} represents a scalar value located at the i-th row and jth column.

	A_{11}	A_{12}	A_{13}		A_{1n}
	A_{21}	A_{22}	A_{23}		A_{2n}
A =	A_{31}	A_{32}	A_{33}		A_{3n}
	:	:	:	۰.,	:
	A_{m1}	A_{m2}	\dot{A}_{m3}		\dot{A}_{mn}
	-				

Fig 2.1 Matrix with the size of $m \times n$. Source: Dummies

Matrices are fundamental in linear algebra and are used to represent and manipulate data in various domains, including physics, engineering, and computer science. Their versatility stems from their ability to capture relationships between entities and perform operations such as addition, multiplication, and transformation, which are essential in complex computations and analyses. For example, in ecommerce systems like Amazon, matrices can encode interactions between users and products, enabling structured analysis and recommendation generation.

A square matrix has an equal number of rows and columns (m = n). For example, a 3×3 matrix is square. Conversely, a rectangle matrix has a matrix that has a non-equal number of rows and columns $(m \neq n)$. There is also a diagonal matrix, which is a special case of a square matrix where all non-diagonal elements are zero and the diagonal elements are any values. For example, as the matrix below the elements of *a* and *b* are any values except zero so it is known to be as matrix diagonal.

$$\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$$
$$a \neq 0, b \neq 0$$

Fig 2.2 Matrix diagonal with the size of 2 × 2 which also a square matrix. Source: Dummies

Matrices also have an operational system that includes addition, subtraction, multiplication, division, scalar multiplication, and scalar division. Just like regular operational system for basic operations, matrices are also valid to use arithmetic rules. There are also special types of matrices, such as transpose matrices and identity matrices. An identity matrix, often denoted as I_n is a diagonal matrix with all diagonal entries being one. It acts as the multiplicative identity in matrix multiplication.

			Гı	0	01	1	0	0	0
F 1 1	[1	0]		1		0	1	0	0
[1],	0	1 '		1	1,	0	0	1	0
	-	-	Γu	U	IJ	0	0	0	1

Fig 2.3 Identity matrices

Transpose Matrix is a fundamental operation in linear algebra that involves flipping the matrix over its diagonal, effectively switching its rows and columns. For a given matrix A, the transpose is denoted as A^{T} or sometimes A'. The element in the *i* -th row and *j* -th column of A becomes the element in the *j* -th row and *i* -th column of A^{T} . Formally, this can be expressed as:

$$(A^T)_{ij} = A_{ji}$$

The result of transpose matrix not only the position of the values is change but possibly if the matrix is a rectangle then the size is also change (from $m \times n$ to $n \times m$).

Fig 2.4 Transpose matrix example for matrix 2×3 Source: and reaminini

2. Matrix as Representation of Data

Matrix representation is a method for storing and manipulating data in a rectangular array of numbers, or functions, in rows and columns. Matrices are used to represent datasets, where each row corresponds to a sample or observation, and each column represents a feature or attribute of that sample [3]. In collaborative filtering-based recommendation systems, data is typically represented as a matrix to model the relationship between users and items (products). This matrix, commonly referred to as the **user-item matrix**, serves as the foundation for analysis and recommendation generation.

The user-item matrix is a two-dimensional representation, where rows correspond to users and columns correspond to items available on the e-commerce platform. Each element of the matrix (R_{ij}) shows the interaction or preference of user *i* for item *j*. These interactions can take the form of explicit ratings, for example: Numerical values provided by users, such as a score from 1 to 5 or star ratings.

$$R = egin{bmatrix} 4 & 0 & 3 & 5 & 0 \ 0 & 2 & 0 & 4 & 3 \ 1 & 5 & 0 & 0 & 0 \end{bmatrix}$$

Fig 2.5 Example of the matrix that contains explicit user ratings from 1-5 for each item.

In this matrix R:

- The first row represents a user who has given explicit ratings to certain items (4 for item 1, 3 for item 3, and 5 for item 4).
- Zero entries indicate missing interactions, meaning that the user has not interacted with or rated those items.
- B. Fundamentals of Singular Value Decomposition (SVD)
 - 1. Introduction to Eigenvalues and Eigenvectors

Eigenvalues and eigenvectors are fundamental concepts in linear algebra, widely applied in areas such as systems of linear equations, transformations, machine learning, and matrix factorizations like Singular Value Decomposition (SVD). Given a square matrix A of size $m \times m$ an eigenvector ν and an eigenvalue λ satisfy the following equation:

$$A\nu = \lambda\nu$$

An eigenvector represents the direction that remains unchanged under the transformation of a matrix A, although its magnitude may be scaled. The scaling factor associated with an eigenvector is called the eigenvalue. Eigenvalues are determined by solving the characteristic equation, given as:

$$\det(A - \lambda I) = 0$$

Where *I* is the identity matrix and λ represents the solutions or roots of the equation. If the matrix *A* is diagonalizable, it can be expressed in the form:

$A = PDP^{-1}$

Where P is a matrix whose columns are the eigenvectors of A, and D is a diagonal matrix containing the eigenvalues of A.

2. Singular Value Decomposition

SVD factors a $m \times n$ matrix A into matrices U, Σ , and Given a matrix A:

$$A = U\Sigma V^T$$

Here, U is an $m \times m$ orthogonal matrix whose columns are the left singular vectors, V^T is the transpose of an $n \times n$ orthogonal matrix whose rows are the right singular vectors, and Σ is an $m \times n$ diagonal matrix containing the singular values of A. These singular values are the square roots of the eigenvalues of $A^T A$ or AA^T , and they represent the magnitudes of the matrix's transformation in each principal direction. SVD provides a way to understand the geometry of a matrix by identifying its key components, making it fundamental in applications such as dimensionality reduction, image compression, and solving linear systems.

C. Collaborative Filtering

1. Introduction to Collaborative Filtering

Collaborative Filtering (CF) is an effective method utilized in recommendation systems for e-commerce platforms such as Amazon. This method leverages user preferences or behavioral data, including purchases, searches, or product ratings, to provide personalized product recommendations [1]. In the context of ecommerce, CF plays a crucial role in enhancing user experience by suggesting relevant products, thereby driving increased sales and improving customer satisfaction [2].

Collaborative Filtering (CF) consists of two types: Item-Based Collaborative Filtering (IBCF), which computes similarities between items, and User-Based Collaborative Filtering (UBCF), which computes similarities between users. IBCF is generally more efficient than UBCF, as typical applications involve far more users than items, making the similarity matrix for IBCF more compact. Additionally, item similarity estimates are more likely to converge over time and can be precomputed and cached, unlike user similarities, which require dynamic computation at regular intervals. However, IBCF recommendations tend to be more conservative compared to UBCF.

2. Implementation of Collaborative Filtering to Amazon Recommendation System

Amazon implements Collaborative Filtering by collecting extensive data on user-product interactions. These interactions include activities such as viewing, purchasing, rating, or adding products to the shopping cart. Based on this data, CF operates through two primary approaches. The first approach, User-Based CF, identifies users with similar preferences and recommends products that these similar users have purchased or liked. The second approach, Item-Based CF, analyzes the similarity between products based on patterns of co-purchases or co-ratings [7]. For instance, if multiple users tend to buy or rate two products together, the system identifies these products as related and recommends them accordingly [8].

To manage the vast and sparse user-product matrixwhere most users interact with only a small subset of available products—Amazon employs Singular Value (SVD). Decomposition SVD reduces the dimensionality of the matrix, making it computationally feasible to uncover latent patterns such as product categories or shared user preferences [9]. For example, when a user purchases a specific book, SVD can reveal latent patterns indicating that other users with similar interests also purchased books in the same category, allowing the system to recommend those books effectively.

In practice, if a user buys a product like "Gaming Laptop X," the Item-Based CF system identifies that other users who purchased "Gaming Laptop X" also bought complementary items such as "Gaming Mouse Y" and "Gaming Headset Z." These products are then recommended to the user. Similarly, through User-Based CF, if a user's shopping history aligns with another user who purchased "Mechanical Keyboard W," the system recommends the keyboard to the first user [7].

The advantages of CF in Amazon's recommendation system are significant. This method provides highly personalized suggestions by analyzing individual user preferences based on historical data [5]. Furthermore, with the application of SVD, Amazon can efficiently handle millions of users and products without compromising the accuracy of its recommendations [9]. Collaborative Filtering also boosts sales by encouraging cross-selling and upselling through relevant product suggestions, such as items frequently bought together. Additionally, CF enhances user engagement by providing tailored recommendations that keep customers interested and satisfied with the platform [8].

Despite its effectiveness, Collaborative Filtering faces certain challenges. One of these is sparsity, as the userproduct matrix is often highly sparse due to the limited interactions of users with the majority of products [6]. To overcome this, SVD is employed to reduce the matrix's dimensionality and extract latent features. Another challenge is the cold start problem, where new users or products lack sufficient data for accurate recommendations. This issue can be mitigated by combining CF with content-based methods or by incorporating metadata about the products [7].

In conclusion, Collaborative Filtering, particularly when augmented with Singular Value Decomposition (SVD), forms the backbone of recommendation systems in e-commerce platforms like Amazon. This approach enables the delivery of highly accurate and personalized recommendations, efficiently handles large-scale data, and significantly enhances customer experience while driving platform revenue [5][9].

III. DEVELOPING PRODUCT RECOMMENDATION SYSTEM BASED USING AMAZON DATASETS

A. Collecting Datasets

To build a collaborative filtering-based product recommendation system using Singular Value Decomposition (SVD), it is crucial to collect relevant datasets that capture user interactions with products. In this study, the Amazon Product Review Dataset, available from publicly accessible sources such as Kaggle and Amazon's open data portal, will be used. This dataset includes detailed information such as user ratings, product metadata, and review text, which are essential for generating personalized product recommendations through collaborative filtering.

For this project datasets that will be chosen to be a sample is an open source datasets gained from an open source datasets provider called Kaggle. The dataset itself has over 7824482 rows and 4 column (User Id, Product Id, Rating, and Timestamp).

Fig 3.1 Importing datasets Source: Author's documents

Fig 3.2 Datasets.csv snippets contain User ID, Product ID, Rating, and Timestamp. Source: Author's documents

Fig 3.3 Datasets distribution based on user product review (before datasets preprocessing) Source: Author's documents

B. Preprocessing Dataset

Load Datasets

Fig 3.4 Import libraries needed to process datasets and developing recommendations Source: Author's documents

ratings = pd.r	ead_csv('ratings_Electronics.csv',
	<pre>names=['userId', 'productId', 'rating', 'timestamp'],</pre>
	error_bad_lines=False,
ratings_origin	al = ratings.copy(deep=True)

Fig 3.5 Preprocessing datasets Source: Author's documents

	userld	productId	rating	timestamp
0	AKM1MP6P0OYPR	0132793040	5.000	1365811200
1	A2CX7LUOHB2NDG	0321732944	5.000	1341100800
2	A2NWSAGRHCP8N5	0439886341	1.000	1367193600
з	A2WNBOD3WNDNKT	0439886341	3.000	1374451200
4	A1GI0U4ZRJA8WN	0439886341	1.000	1334707200

Fig 3.6 4 head datasets after preprocessed Source: Author's documents

1. Drop The Duplicates and Make The Timestamp Readable

Duplicate entries are among the most pervasive issues in raw datasets. They may arise from various sources, including system errors, manual data entry mistakes, or the integration of multiple datasets.

Fig 3.7 Drop duplicates process Source: Author's documents

Fig 3.8 Make the timestamp from distorted metrics error into a readable timestamp Source: Author's documents

	userld	productId	rating	timestamp
0	AKM1MP6P0OYPR	0132793040	5.000	2013-04-13
1	A2CX7LUOHB2NDG	0321732944	5.000	2012-07-01
2	A2NWSAGRHCP8N5	0439886341	1.000	2013-04-29
3	A2WNBOD3WNDNKT	0439886341	3.000	2013-07-22
4	A1GI0U4ZRJA8WN	0439886341	1.000	2012-04-18

Fig 3.9 4 heads dataset after preprocessed Source: Author's documents

After the datasets are preprocessed, the datasets are now ready to be used as a part of developing a recommendation system using a collaborative filtering technique.

Fig 3.9 Visualization for datasets after being preprocessed Source: Author's documents

Makalah IF2123 Aljabar Linier dan Geometri – Semester I Tahun 2024/2025

Build Collaborative Filtering Model

- 1. Creating the Sparse Matrix
 - Collaborative filtering leverages user-item interaction data to predict user preferences. SVD is applied to decompose the user-item matrix, capturing latent factors that represent user and item characteristics. These latent factors are then used to predict missing entries in the matrix.

Fig 3.10 Creating the sparse matrix Source: Author's documents

- 2. Calculate user-user similarity and item-item similarity
 - User-User Similarity: Helps identify users with similar preferences or behaviors (e.g., users who rate similar items in a similar way). Recommendations for a target user are then derived from items preferred by these similar users.
 - Item-Item Similarity: Identifies items that are rated or interacted with similarly by users. If a user likes or interacts with an item, they are likely to prefer similar items based on this similarity.

Fig 3.11 Calculating user-user similarity and item-item similarity (with the results) Source: Author's documents

3. Calculate the n-neighborhood based on the user-user and item-item similarity

An *n*-neighborhood (or k-nearest neighbors) refers to selecting the n most similar users or items for making recommendations.

# Metho def fin ord df ret # Find user_10	d to) d_n_m er = r = df.a urn df 10 nel	find tighb tp.an apply f lghba tbors	top N n ors(df, gsort(d (axis=1, rs of e = find	eighbors): f.values, av , func=lambors ach user _n_neighbors	: <mark>is=1)[:, :n</mark> la x: pd.Ser :(user_simil	(] ies() aritj	x.sort_v index=[' y_df, 18	values('top[]'	asce . for	nding=Fals mat(i) for	se).iloc[:n] r i in range	[.index, :(1, n+1)]]))
user_10	_neigt 10 nei	i bors Ighb <u>o</u>											
item_10 item_10	_neigh _neigh	tbors	= find head(10										
							-	-		_			-
modertid		top1		ip2 toj	3 top	4	top5		topi	top7	top8	top9	
0594451647	80058	A7AJU	8005018	714 B0076AUCI	U BODSEFNEV	2 80	073V1NP0	BOOMY	DIMY	BODAV1UWW	BODS.ROBJE	B004EHSP3Y	80
0594481813	80003	OUXSI	80009/17	AA BOOBSE794	D BOOCBOUFN	0 80	OCEDUD60	8009W	ESIEY	800702800	8007NNTLK2	8001050560	80
0970407998	800009	968D3	8000781	34K B001E968	2 B001EYU6Q	н в	0015iOUK2	BOODKA	LISW	B001ADUCTU	80051753064	BODICTODAS	80
0972683275	800734	BOWI	8008025	U6 8003ICXCZ	M 8004HW67M	N 80	03GZD81Q	800022	700M	8001TLDES	8 800681RURS	80000901191	
1400501466	800490	N650	BOOBCAR	00 80098/519	G 800211T3	5 800	DISTEHAM	800014	GTFW	B002WV6LAB	800462RU60	8004P1ITV2	BOX
1400501520	800300	KIGAU	80053EVV	ITY BOOMHOSEN	0 800211658	Q 8	004P1/TV2	800462	RU60	8004P1ITU8	BOOOGTGHAM	800009W3U9	
1400501776	800463	2RU60	8003D28	54E 80053EVVT	W BOOMP1ITV	2 8	IN THE RUTING	800211	GBBQ	BOOSKHEFE2C	BOODFSILBM	BOCOGTEHAM	
1400532620	8008GT	INDEA	8006K590	RC BOO2NFZS	5 8007AHQMT	0 80	ODO4WHFL	8006/5	ITVEA	B0010KWCW	BOGAEFFLIQ	BOOGQTDOCO	
1400532655	BOOSIH	IFSRM	8004NT0	210 B0034XDT	8 B000E39V9	E B	0003009E4	80021	12191	B000MNA082	BOOTSTOOITM	BOOTSORTXOM	
140053271X	BOOGED	CW166	B000GT6H	AM 80081667	21 B0044R1VV	4 1	80021/1735	800510	IFF2Q	80030LKGAU	B0053EVVTW	80053EVW1Y	80
	lop3		top4	te	pS	top6		top7		top8	tog	ø	toş
A300027821	1100 A	2017044	174/25721	A3184E187C4C	M A200620N7	NEOI	AT527T	1020268	4200	2MOCDM 7	A22VMCC1UEDC	2 A2006YOR	1224
AZYOWNPLIK	11591	298612	DORHGK7	A1CST2WUA32G	PO A15028EGG	FFOW	A3D8226	11/2/400	A714	2/GN/7GZ 1951	A18SVGUH96C	AXPRCOS	CEAN
ANTN6154L7	W(79	AZLE16	FOIOSIL7P	AZUKETGIVCT/R	W ADGAGOS	NITU	AZRIHUY	HXV7H18	ABIS	THEOLOPCEL	ATWOIG10EI353	0 A20163B4	BRPS
v2008ZPQT58	XHV A	INZLRA	ZIGD99W	A1D278CSIV7VI	H AVTJEWTC	JIPBE	AAK6S	DEN30YG	A2G	KMX/RLI7KLFP	AZVORAWCP01	IP AKSFZ4G	1400
2PMR2PIGWN	109	мник	SM2KQ85	A2TVH208NXXX	N ABIFLVDK	285JF	AZUOHAL	GF2X770	A248	CERDIKRIKROV	A2IFKH3TJ103	7 A3ILO00FM	1750
ASV2EZ6MAS	2576	A3SP7T	2923HSDE	AO09RWV400	78 A3J3ZHGDUC	OPCFL	AJQNQQ	KJTL76HD	A1R	10TV8UMVD	A19W47CXJIP1	ALDINIG	WQIL
A3F7USIDJBR	BWU /	ເດຍ	MEXV6F8	A32HSNCNPRUM	TR A1LSTASUQF	TEWE	A3223W5	ROMYTY	A1Z	UEHF4AES86	A17W0GMB0YY83	M A2HV76MY	H7UI
AZEKSDMD	54VJ		P6J4JF91X	AJEOFP6ZWY0	AK A2HRHF8313	NDGT	A24P4E	IRIGAX94	A28	621TSIRSEOG	ATVLE25H9J8W	IS AZMX545	ERLS
2MUBOL2FYN	TOW A	10000	1Z49PGKQ	A28LFCOPSMB0	29 A2CWIMETN	BAK3	AIMCHER	006876	A26	DULT2100RL1	A1PI8V8CXXSG	7 AIX9A40) 19U'
1TQBAHI3M		A87NGL	THRENOB	AZEXICUHHAIW	IX A3HCMUOGRI		A3IRADE	HISNESU	A19N	1357CB5U607	A1L1N3J6XNABC	2 AYNAH99	SVDI.

Fig 3.12 Similarity correlation using nneighborhood (or k-nearest neighbors) Source: Author's documents

The combination of similarity search and the *n*neighborhood approach ensures the recommendations are both computationally efficient and personalized, catering to the user's preferences effectively.

4. Generate the recommendation system using CF model

Once the similarity computations between users or items are completed and the *n-neighborhood* is identified, Collaborative Filtering (CF) employs these relationships to generate personalized recommendations. This process involves aggregating the preferences of similar users (User-Based CF) or drawing inferences from similar items (Item-Based CF) to predict and recommend items that align with the target user's interests.

Fig 3.13 Product recommendation based on CF model Source: Author's documents

Based on the testing for the user_id given ("A100UD67AHFODS"), the result are shown as below:

Top 6 recommendation	s for the use	erId: A100UD67AH	FODS
	user_ratings	user_predictions	
Recommended Items			
B003ES5ZUU	0.000	0.873	
B007WTAJTO	0.000	0.684	
B0088CJT4U	0.000	0.509	
B00G4UQ6U8	0.000	0.485	
B002V88HFE	0.000	0.463	
B00829THK0	0.000	0.462	

Fig 3.14 Product recommendations results Source: Author's documents

5. Generate the recommendation system using the SVD model

The implementation of a recommendation system using the Singular Value Decomposition (SVD) model involves leveraging matrix factorization to predict user preferences for items. The process begins with decomposing the user-item interaction matrix into three components: U, representing user-specific latent features; Σ , a diagonal matrix of singular values indicating the importance of latent features; and V^T , capturing item-specific latent features. By reconstructing the matrix through $U. \Sigma. V^T$, the system can estimate missing predicting values, effectively user-item interactions. These predictions enable the system to recommend items by identifying those with the highest predicted ratings for each user that they have not interacted with. Additionally, evaluating the accuracy of these predictions using metrics such as Root Mean Square Error (RMSE) ensures reliability. The the model's SVD-based recommendation system efficiently captures latent patterns within the data, providing scalable and

personalized suggestions tailored to user preferences.

<pre># [reads out different Literat factors in [180,259,500,759,1000]] prod_list = [pd.bataFrame(np.dot(np.dot(xv[6]), np.diag(xv[6])), svd[2]),</pre>
pred in pred_list] RMSE_list
Singular Volue Decomposition U, sigma, Vt = svd(susc_item, k=50) # Construct diagonal array in SVD sigma = np.diag(sigma)
<pre># Print the shame of the decomposed matrices print("Shape of the left Singular matrix i', U.shape) print("Shape of the Latent Factor Diagonal matrix i', sigma.shape) print("Shape of the Right Singular matrix i', vt.shape) U.shape_sigma.shape, Vt.shape</pre>
<pre># Predicted rotings svd_prediction = pd.lotaframe(np.dot(np.dot(U, sigma), Vt), index=user_item.index, columnsumer_item.columns) svd_prediction.head()</pre>
<pre># Find recommendation for couple of users find_recom = (*140000740F005': 6) # This list is user, top_n recommendation dict. for user in find_recom: print("Top %d recommendations for the userId: %S" %(find_recom[user],user)) recommend_itexs(user, user_item, svd_prediction, find_recom[user]) print("\n")</pre>

Fig 3.15 Product recommendations based on SVD model Source: Author's documents

Fig 3.16 RMSE calculation Source: Author's documents

Based on the SVD models given the results are shown as below:

Find recommendation for couple of find_recom = (*100000700F005': 6) for user in find_recom: print(*Top %d recommendations for recommend_items(user, user_item, print(*Vor) Top 6 recommendations	users r the userId: %s" %(fir svd_prediction, find_r s for the userId:	id_recom[user],user]) ecom[user]) A100UD67AHFOD5
	user_ratings user	predictions
Recommended Items		
B0019EHU8G	0.000	1.407
B003ES5ZUU	0.000	1.097
B007OY5V68	0.000	0.987
B000JMJWV2	0.000	0.946
B009SYZ8OC	0.000	0.848
B00DTZYHX4	0.000	0.745

Fig 3.17 Product recommendations results Source: Author's documents

V. CONCLUSION

This paper explores the use of Collaborative Filtering (CF) enhanced with Singular Value Decomposition (SVD) in developing a recommendation system for Amazon's ecommerce platform. By leveraging SVD, the recommendation system efficiently addresses challenges such as data sparsity and scalability, extracting latent factors to uncover hidden relationships in user-item interactions. The system demonstrates the ability to predict user preferences accurately, providing personalized and relevant recommendations. Through the application of SVD, the study emphasizes the importance of matrix factorization techniques in handling large-scale datasets and delivering impactful customer experiences. The integration of CF and SVD not only enhances user engagement but also drives revenue growth by encouraging cross-selling and upselling opportunities. Future work could explore hybrid models combining CF with other techniques to overcome limitations like the cold start problem and further improve recommendation accuracy.

VI. APPENDIX

For the GitHub source code you can access this link.

VII. ACKNOWLEDGMENT

First and foremost, I would like to express my deepest gratitude to God Almighty for His endless blessings, guidance, and strength throughout the process of completing this paper. Without His grace, this work would not have been possible. I am profoundly thankful to Mr. Dr. Ir. Rinaldi Munir, M.T., and Mr. Arrival Dwi Sentosa, S.Kom., M.T., for their invaluable guidance, support, and expertise. Their insightful feedback and encouragement have been instrumental in shaping this work and enriching my understanding of the subject matter.

Additionally, I extend my heartfelt appreciation to my friends and colleagues who have provided unwavering support, constructive suggestions, and collaborative spirit during this journey. Their encouragement and shared dedication have been a source of inspiration and motivation. Thank you all for contributing to the successful completion of this paper.

REFERENCES

- B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, "A comparison of collaborative-filtering recommendation algorithms for e-commerce," *Proceedings of the 1st ACM Conference on Electronic Commerce*, 2000.
- [2] R. Munir, "Aljabar Geometri: Review Matriks," Institut Teknologi Bandung (ITB), 2023. [Online]. Available: <u>https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-2024/Algeo-01-Review-Matriks-2023.pdf</u>. [Accessed: Dec. 31, 2024].
- [3] CK-12 Foundation, "Matrices to represent data," in CK-12 Precalculus Concepts, 2nd ed., [Online]. Available: <u>https://flexbooks.ck12.org/cbook/ck-12-precalculus-concepts-</u> 2.0/section/8.3/primary/lesson/matrices-to-represent-data-pcalc/. [Accessed: Dec. 31, 2024].
- R. Munir, "Singular Value Decomposition: Bagian 1," 2023. [Online]. Available: <u>https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-</u>

2024/Algeo-21-Singular-value-decomposition-Bagian1-2023.pdf. [Accessed: Dec. 31, 2024].

- [5] S. Khan, J. Ali, and S. Ullah, "Recommendation System for E-Commerce Using Collaborative Filtering and Machine Learning," *International Journal of Advanced Computer Science and Applications*, vol. 12, no. 5, pp. 560-567, 2021.
- [6] C. Maklin, "Model Based Collaborative Filtering SVD," *Medium*, 2019. [Online]. Available: <u>https://medium.com/@corymaklin/model-based-collaborative-filtering-svd-19859c764cee</u>. [Accessed: Dec. 31, 2024].
- [7] A. Tam, "Using Singular Value Decomposition to Build a Recommender System," *Machine Learning Mastery*, 2021. [Online]. Available: <u>https://machinelearningmastery.com/using-singular-valuedecomposition-to-build-a-recommender-system/</u>. [Accessed: Dec. 31, 2024].

- [8] R. Gupta, "How Singular Value Decomposition (SVD) is used in Recommendation Systems — Clearly Explained," *Medium*, 2020. [Online]. Available: https://medium.com/@ritik_gupta/how-singularvalue-decomposition-svd-is-used-in-recommendation-systems-clearlyexplained-201b24e175db. [Accessed: Dec. 31, 2024].
- [9] D. A. Galron, Y. M. Brovman, J. Chung, M. Wieja, and P. Wang, "Deep Item-based Collaborative Filtering for Sparse Implicit Feedback," *arXiv* preprint arXiv:1812.10546, 2018. [Online]. Available: <u>https://arxiv.org/abs/1812.10546</u>. [Accessed: Dec. 31, 2024].
- [10] S. Kumar, "Amazon Product Reviews," Kaggle, 2024. [Online]. Available: <u>https://www.kaggle.com/datasets/saurav9786/amazon-product-reviews?resource=download</u>, [Accessed: Dec. 31, 2024].

STATEMENT

Hereby, I declare that the paper I have written is my own work, not an adaptation or translation of someone else's paper, and not plagiarism.

Bandung, January 1 2025

Muhammad Rizain Firdaus (13523164)